Automated orientation detection of 3D head reconstructions from sMRI using multiview orthographic projections: An image classification-based approach
Visualitza/Obre
Autor/a
Altres autors/es
Data de publicació
2023-06ISBN
978-3-031-36616-1
Resum
Recent studies in neuropsychiatry have highlighted the correlation between facial and brain dysmorphologies. One way of simultaneously analysing the brain and the face of a subject is by reconstructing a whole-head 3D model from structural magnetic resonance imaging (sMRI). However, the use of different reconstruction protocols generates undesired orthogonal rotations of the 3D models. This is a likely situation in multicentric studies that hampers the combination of data from different centers. Although the original sMRI files contain the subject orientation, it is not always possible to access this data. To solve this issue, in this work we propose a novel method to estimate the orientation of 3D heads with rotations of 90º or multiples thereof around any of the three Cartesian axes as a required step for generating a normalised dataset in terms of orientation. Our proposal creates 2D images from orthogonal projections of the 3D object, transforming orientation estimation into an image classification problem. Experimental results show that our method, using three orthographic views of the 3D head to create the projection image and ResNet50 for classification, achieves an accuracy of 99.7%, which corresponds to 0.15 mean absolute error in rotation, outperforming state-of-the-art point cloud registration methods like DeepBBS and PRNet.
Tipus de document
Article
Versió del document
Versió acceptada
Llengua
Anglès
Matèries (CDU)
004 - Informàtica
61 - Medicina
62 - Enginyeria. Tecnologia
Paraules clau
Pàgines
12 p.
Publicat per
Springer
Publicat a
Lecture Notes in Computer Science, Vol. 14062, pp. 603-614
Aquest element apareix en la col·lecció o col·leccions següent(s)
Drets
© Springer Nature, tots els drets reservats