Deep Air – A Smart City AI Synthetic Data Digital Twin Solving the Scalability Data Problems
Autor/a
Otros/as autores/as
Fecha de publicación
2022ISSN
0922-6389
Resumen
Cities are becoming data-driven, re-engineering their processes to adapt to dynamically changing needs. A.I. brings new capabilities, effectively enlarging the space of policy interventions that can be explored and applied. Therefore, new tools are needed to augment our capacity to traverse this space and find adequate policy interventions. Digital twins are revealing themselves as powerful tools for policy experimentation and exploration, allowing faster and more complete explorations while avoiding costly interventions. However, they face some problems, among them data availability and model scalability. We introduce a digital twin framework based on an A.I. and a synthetic data model on NO2 pollution as a proof-of-concept, showing that this approach is feasible for policy evaluation and (autonomous) intervention and solves the problems of data scarcity and model scalability while enabling city level Open Innovation.
Tipo de documento
Artículo
Versión del documento
Versión publicada
Lengua
Inglés
Palabras clave
Digital Twins
Páginas
4 p.
Publicado por
IOS Press BV
Publicado en
Frontiers in Artificial Intelligence and Applications
Este ítem aparece en la(s) siguiente(s) colección(ones)
Derechos
© L'autor/a
Excepto si se señala otra cosa, la licencia del ítem se describe como http://creativecommons.org/licenses/by-nc/4.0/