Bivariate Volatility Modeling with High-Frequency Data
Otros/as autores/as
Fecha de publicación
2019ISSN
2225-1146
Resumen
We propose a methodology to include night volatility estimates in the day volatility modeling problem with high-frequency data in a realized generalized autoregressive conditional heteroskedasticity (GARCH) framework, which takes advantage of the natural relationship between the realized measure and the conditional variance. This improves volatility modeling by adding, in a two-factor structure, information on latent processes that occur while markets are closed but captures the leverage effect and maintains a mathematical structure that facilitates volatility estimation. A class of bivariate models that includes intraday, day, and night volatility estimates is proposed and was empirically tested to confirm whether using night volatility information improves the day volatility estimation. The results indicate a forecasting improvement using bivariate models over those that do not include night volatility estimates.
Tipo de documento
Artículo
Versión del documento
Versión publicada
Lengua
Inglés
Palabras clave
Bivariate GARCH
Páginas
15 p.
Publicado por
Multidisciplinary Digital Publishing Institute (MDPI)
Publicado en
Econometrics
Este ítem aparece en la(s) siguiente(s) colección(ones)
Derechos
© L'autor/a
Excepto si se señala otra cosa, la licencia del ítem se describe como http://creativecommons.org/licenses/by/4.0/