Bivariate Volatility Modeling with High-Frequency Data
Altres autors/es
Data de publicació
2019ISSN
2225-1146
Resum
We propose a methodology to include night volatility estimates in the day volatility modeling problem with high-frequency data in a realized generalized autoregressive conditional heteroskedasticity (GARCH) framework, which takes advantage of the natural relationship between the realized measure and the conditional variance. This improves volatility modeling by adding, in a two-factor structure, information on latent processes that occur while markets are closed but captures the leverage effect and maintains a mathematical structure that facilitates volatility estimation. A class of bivariate models that includes intraday, day, and night volatility estimates is proposed and was empirically tested to confirm whether using night volatility information improves the day volatility estimation. The results indicate a forecasting improvement using bivariate models over those that do not include night volatility estimates.
Tipus de document
Article
Versió del document
Versió publicada
Llengua
Anglès
Paraules clau
Bivariate GARCH
Pàgines
15 p.
Publicat per
Multidisciplinary Digital Publishing Institute (MDPI)
Publicat a
Econometrics
Aquest element apareix en la col·lecció o col·leccions següent(s)
Drets
© L'autor/a
Excepte que s'indiqui una altra cosa, la llicència de l'ítem es descriu com http://creativecommons.org/licenses/by/4.0/