Environmental Adaptation and Differential Replication in Machine Learning
Altres autors/es
Data de publicació
2020ISSN
1099-4300
Resum
When deployed in the wild, machine learning models are usually confronted with an environment that imposes severe constraints. As this environment evolves, so do these constraints. As a result, the feasible set of solutions for the considered need is prone to change in time. We refer to this problem as that of environmental adaptation. In this paper, we formalize environmental adaptation and discuss how it differs from other problems in the literature. We propose solutions based on differential replication, a technique where the knowledge acquired by the deployed models is reused in specific ways to train more suitable future generations. We discuss different mechanisms to implement differential replications in practice, depending on the considered level of knowledge. Finally, we present seven examples where the problem of environmental adaptation can be solved through differential replication in real-life applications.
Tipus de document
Article
Versió del document
Versió publicada
Llengua
Anglès
Paraules clau
Natural selection
Pàgines
14 p.
Publicat per
Multidisciplinary Digital Publishing Institute (MDPI)
Publicat a
Entropy
Aquest element apareix en la col·lecció o col·leccions següent(s)
Drets
© L'autor/a
Excepte que s'indiqui una altra cosa, la llicència de l'ítem es descriu com http://creativecommons.org/licenses/by/4.0/