P-curve won’t do your laundry, but it will distinguish replicable from non-replicable findings in observational research: Comment on Bruns & Ioannidis (2016)
Otros/as autores/as
Fecha de publicación
2019ISSN
1932-6203
Resumen
p-curve, the distribution of significant p-values, can be analyzed to assess if the findings have evidential value, whether p-hacking and file-drawering can be ruled out as the sole explanations for them. Bruns and Ioannidis (2016) have proposed p-curve cannot examine evidential value with observational data. Their discussion confuses false-positive findings with confounded ones, failing to distinguish correlation from causation. We demonstrate this important distinction by showing that a confounded but real, hence replicable association, gun ownership and number of sexual partners, leads to a right-skewed p-curve, while a false-positive one, respondent ID number and trust in the supreme court, leads to a flat p-curve. P-curve can distinguish between replicable and non-replicable findings. The observational nature of the data is not consequential.
Tipo de documento
Artículo
Versión del documento
Versión publicada
Lengua
Inglés
Palabras clave
p-curve
Páginas
5 p.
Publicado por
Public Library of Science
Publicado en
PLOS One
Este ítem aparece en la(s) siguiente(s) colección(ones)
Derechos
© L'autor/a
Excepto si se señala otra cosa, la licencia del ítem se describe como http://creativecommons.org/licenses/by/4.0/