P-curve won’t do your laundry, but it will distinguish replicable from non-replicable findings in observational research: Comment on Bruns & Ioannidis (2016)
Altres autors/es
Data de publicació
2019ISSN
1932-6203
Resum
p-curve, the distribution of significant p-values, can be analyzed to assess if the findings have evidential value, whether p-hacking and file-drawering can be ruled out as the sole explanations for them. Bruns and Ioannidis (2016) have proposed p-curve cannot examine evidential value with observational data. Their discussion confuses false-positive findings with confounded ones, failing to distinguish correlation from causation. We demonstrate this important distinction by showing that a confounded but real, hence replicable association, gun ownership and number of sexual partners, leads to a right-skewed p-curve, while a false-positive one, respondent ID number and trust in the supreme court, leads to a flat p-curve. P-curve can distinguish between replicable and non-replicable findings. The observational nature of the data is not consequential.
Tipus de document
Article
Versió del document
Versió publicada
Llengua
Anglès
Paraules clau
p-curve
Pàgines
5 p.
Publicat per
Public Library of Science
Publicat a
PLOS One
Aquest element apareix en la col·lecció o col·leccions següent(s)
Drets
© L'autor/a
Excepte que s'indiqui una altra cosa, la llicència de l'ítem es descriu com http://creativecommons.org/licenses/by/4.0/