Copying Machine Learning Classifiers
Otros/as autores/as
Fecha de publicación
2020ISSN
2169-3536
Resumen
We study copying of machine learning classifiers, an agnostic technique to replicate the decision behavior of any classifier. We develop the theory behind the problem of copying, highlighting its properties, and propose a framework to copy the decision behavior of any classifier using no prior knowledge of its parameters or training data distribution. We validate this framework through extensive experiments using data from a series of well-known problems. To further validate this concept, we use three different use cases where desiderata such as interpretability, fairness or productivization constrains need to be addressed. Results show that copies can be exploited to enhance existing solutions and improve them adding new features and characteristics.
Tipo de documento
Artículo
Versión del documento
Versión publicada
Lengua
Inglés
Palabras clave
Applied machine learning
Páginas
17 p.
Publicado por
Institute of Electrical and Electronics Engineers Inc.
Publicado en
IEEE Access
Este ítem aparece en la(s) siguiente(s) colección(ones)
Derechos
© L'autor/a
Excepto si se señala otra cosa, la licencia del ítem se describe como http://creativecommons.org/licenses/by/4.0/