Interacting With Curves: How to Validly Test and Probe Interactions in the Real (Nonlinear) World
Autor/a
Otros/as autores/as
Fecha de publicación
2024ISSN
2515-2459
Resumen
Hypotheses involving interactions in which one variable modifies the association between another two are very common. They are typically tested relying on models that assume effects are linear, for example, with a regression like y = a + bx + cz + dx × z. In the real world, however, few effects are linear, invalidating inferences about interactions. For instance, in realistic situations, the false-positive rate can be 100% for detecting an interaction, and a probed interaction can reliably produce estimated effects of the wrong sign. In this article, I propose a revised toolbox for studying interactions in a curvilinear-robust manner, giving correct answers “even” when effects are not linear. It is applicable to most study designs and produces results that are analogous to those of current—often invalid—practices. The presentation combines statistical intuition, demonstrations with published results, and simulations.
Tipo de documento
Artículo
Versión del documento
Versión publicada
Lengua
Inglés
Palabras clave
Social behavior
Páginas
22 p.
Publicado por
SAGE Publications
Publicado en
Advances in Methods and Practices in Psychological Science
Este ítem aparece en la(s) siguiente(s) colección(ones)
Derechos
© L'autor/a
Excepto si se señala otra cosa, la licencia del ítem se describe como http://creativecommons.org/licenses/by-nc/4.0/