Scaling-up multiobjective evolutionary clustering algorithms using stratification
Altres autors/es
Universitat Ramon Llull. Facultat de Turisme i Direcció Hotelera Sant Ignasi
Data de publicació
2016-12-02ISSN
0167-8655
Resum
Multiobjective evolutionary clustering algorithms are based on the optimization of several objective functions that guide the search following a cycle based on evolutionary algorithms. Their capabilities allow them to find better solutions than with conventional clustering algorithms when more than one criterion is necessary to obtain understandable patterns from the data. However, these kind of techniques are expensive in terms of computational time and memory usage, and specific strategies are required to ensure their successful scalability when facing large-scale data sets. This work proposes the application of a data subset approach for scaling-up multiobjective clustering algorithms and it also analyzes the impact of three stratification methods. The experiments show that the use of the proposed data subset approach improves the performance of multiobjective evolutionary clustering algorithms without considerably penalizing the accuracy of the final clustering solution.
Tipus de document
Article
Versió del document
Versió acceptada
Llengua
English
Matèries (CDU)
004 - Informàtica
Paraules clau
Algorismes computacionals
Clustering algorithms
Evolutionary algorithms
Computational time
Final clustering
Anàlisi de conglomerats
Pàgines
10 p.
Publicat per
Elsevier
Publicat a
Pattern Recognition Letters
Aquest element apareix en la col·lecció o col·leccions següent(s)
Drets
© Elsevier
Excepte que s'indiqui una altra cosa, la llicència de l'ítem es descriu com http://creativecommons.org/licenses/by-nc-nd/4.0/