Big data in multi-block data analysis: An approach to parallelizing Partial Least Squares Mode B algorithm
Autor/a
Martinez Ruiz, Alba
Montañola i Sales, Cristina
Otros/as autores/as
Universitat Ramon Llull. IQS
Fecha de publicación
2019-04-29ISSN
2405-8440
Resumen
Partial Least Squares (PLS) Mode B is a multi-block method and a tightly coupled algorithm for estimating structural equation models (SEMs). Describing key aspects of parallel computing, we approach the parallelization of the PLS Mode B algorithm to operate on large distributed data. We show the scalability and performance of the algorithm at a very fine-grained level thanks to the versatility of pbdR, a R-project library for parallel computing. We vary several factors under different data distribution schemes in a supercomputing environment. Shorter elapsed times are obtained for the square-blocking factor 16 × 16 using a grid of processors as square as possible and non-square blocking factors 1000 × 4 and 10000 × 4 using an one-column grid of processors. Depending on the configuration, distributing data in a larger number of cores allows reaching speedups of up to 121 over the CPU implementation. Moreover, we show that SEMs can be estimated with big data sets using current state-of-the-art algorithms for multi-block data analysis.
Tipo de documento
Artículo
Versión del documento
Versión publicada
Lengua
English
Materias (CDU)
004 - Informática
Palabras clave
Computer science
Computational mathematics
Big data
Dades massives
Páginas
29 p.
Publicado por
Elsevier
Publicado en
Heliyon
Este ítem aparece en la(s) siguiente(s) colección(ones)
Derechos
© L'autor/a
Excepto si se señala otra cosa, la licencia del ítem se describe como http://creativecommons.org/licenses/by-nc-nd/4.0/