Connecting domain-specific features to source code: towards the automatization of dashboard generation
Visualitza/Obre
Autor/a
Vazquez Ingelmo, Andrea
García Peñalvo, Francisco José
Therón, Roberto
Fonseca Escudero, David
Altres autors/es
Universitat Ramon Llull. La Salle
Universidad de Salamanca
Data de publicació
2019-11-05Resum
Dashboards are useful tools for generating knowledge and support decision-making processes, but the extended use of technologies and the increasingly available data asks for user-friendly tools that allow any user profile to exploit their data. Building tailored dashboards for any potential user profile would involve several resources and long development times, taking into account that dashboards can be framed in very different contexts that should be studied during the design processes to provide practical tools. This situation leads to the necessity of searching for methodologies that could accelerate these processes. The software product line paradigm is one recurrent method that can decrease the time-to-market of products by reusing generic core assets that can be tuned or configured to meet specific requirements. However, although this paradigm can solve issues regarding development times, the configuration of the dashboard is still a complex challenge; users’ goals, datasets, and context must be thoroughly studied to obtain a dashboard that fulfills the users’ necessities and that fosters insight delivery. This paper outlines the benefits and a potential approach to automatically configuring information dashboards by leveraging domain commonalities and code templates. The main goal is to test the functionality of a workflow that can connect external algorithms, such as artificial intelligence algorithms, to infer dashboard features and feed a generator based on the software product line paradigm.
Tipus de document
Article
Versió acceptada
Llengua
English
Matèries (CDU)
004 - Informàtica
378 - Ensenyament superior. Universitats
62 - Enginyeria. Tecnologia
Paraules clau
Ensenyament universitari -- Innovacions tecnològiques
Intel·ligència artificial -- Aplicacions a l'educació
Pàgines
13 p.
Publicat per
Springer
Publicat a
Cluster Computing, 2020, Vol. 23
Aquest element apareix en la col·lecció o col·leccions següent(s)
Drets
© L'autor/a. Tots el drets reservats