Text Classification based on Associative Relational Networks for Multi-Domain Text-to-Speech Synthesis
Visualitza/Obre
Autor/a
Alías Pujol, Francesc
Sevillano Domínguez, Xavier
Socoró Carrié, Joan Claudi
Altres autors/es
Universitat Ramon Llull. La Salle
Data de publicació
2006-08Resum
This work is a step further in our research towards developing a new strategy for high quality text-to-speech (TTS)
synthesis among different domains. In this context, it is
necessary to select the most appropriate domain for synthesizing the text input to the TTS system, task that can be
solved including a text classifier (TC) in the classic TTS architecture. Since speech speaking style and prosody depend
on the sequentiality and text structure of the message, the
TC should consider not only thematic but also stylistic aspects of text. To this end, we introduce a new text modelling
scheme based on an associative relational network, which
represents texts as a weighted word-based graph. The conducted experiments validate the proposal in terms of both
objective (text classification efficiency) and subjective (perceived synthetic speech quality) evaluation criteria.
Tipus de document
Objecte de conferència
Llengua
English
Paraules clau
Processament de la parla
Parla
Pàgines
5 p.
Publicat per
The SIGIR Workshop on Directions in Computational Analysis of Stylistics in Text Retrieval, Seattle, August 2006
Publicat a
Proceedings of the SIGIR Workshop on Directions in Computational Analysis of Stylistics in Text Retrieval
Aquest element apareix en la col·lecció o col·leccions següent(s)
Drets
© The Pennsylvania State University. Tots els drets reservats