Conductivities consistent with Birkeland currents in the AMPERE-driven TIE-GCM
Ver/Abrir
Autor/a
Marsal Vinadé, Santiago
Otros/as autores/as
Universitat Ramon Llull. Observatori de l’Ebre
Observatori de l’Ebre-CSIC
Fecha de publicación
2015-09-26Resumen
The Active Magnetosphere and Planetary Electrodynamics Response Experiment (AMPERE)
satellite mission has offered for the first time global snapshots of the geomagnetic field-aligned currents
with unprecedented space and time resolution, thus providing an opportunity to feed an acknowledged
first-principles model of the Earth’s upper atmosphere such as the National Center for Atmospheric Research
Thermosphere-Ionosphere-Electrodynamics General Circulation Model (NCAR TIE-GCM). In the first step,
Marsal et al. (2012) used AMPERE data in the current continuity equation between the magnetosphere and
the ionosphere to drive the TIE-GCM electrodynamics. In the present work, ionospheric conductivities have
been made consistent with enhanced upward field-aligned currents, which are assumed to correspond to
electrons plunging as a result of downward acceleration by electric fields built up along the geomagnetic
field lines. The resulting conductance distribution is reasonably commensurate with an independent model
that has tried to quantify the ionizing effect of precipitating particles onto the auroral ionosphere. On the
other hand, comparison of geomagnetic observatory data with the ground magnetic variations output by the
model only shows a modest improvement with respect to our previous approach.
Tipo de documento
Artículo
Lengua
English
Materias (CDU)
537 - Electricidad. Magnetismo. Electromagnetismo
Palabras clave
Geomagnetism
Ionospheric conductivities
Field aligned currents
Páginas
21 p.
Publicado por
American Geophysical Union
Colección
Journal of geophysical research. Space physics; 120
Publicado en
Marsal,S.(2015),Conductivities consistent with Birkeland currents in the AMPERE-driven TIE-GCM, J. Geophys. Res. Space Physics, 120, 8045–8065, doi:10.1002/ 2015JA021385.
Este ítem aparece en la(s) siguiente(s) colección(ones)
Derechos
© American Geophysical Union. Tots els drets reservats.