Fluid-structure interaction simulations outperform computational fluid dynamics in the description of thoracic aorta haemodynamics and in the differentiation of progressive dilation in Marfan syndrome patients
Autor/a
Martorell López, Jordi
Molins Vara, José Javier
Pons, R.
Guala, A.
Rodríguez-Palomares, J.F.
Cajas, J.C.
Dux-Santoy, L.
Teixidó-Tura, G.
Vázquez, M.
Evangelista, A.
Otros/as autores/as
Universitat Ramon Llull. IQS
Fecha de publicación
2020-02Resumen
Abnormal fluid dynamics at the ascending aorta may be at the origin of aortic aneurysms. This study was aimed at comparing the performance of computational fluid dynamics (CFD) and fluid–structure interaction (FSI) simulations against four-dimensional (4D) flow magnetic resonance imaging (MRI) data; and to assess the capacity of advanced fluid dynamics markers to stratify aneurysm progression risk. Eight Marfan syndrome (MFS) patients, four with stable and four with dilating aneurysms of the proximal aorta, and four healthy controls were studied. FSI and CFD simulations were performed with MRI-derived geometry, inlet velocity field and Young's modulus. Flow displacement, jet angle and maximum velocity evaluated from FSI and CFD simulations were compared to 4D flow MRI data. A dimensionless parameter, the shear stress ratio (SSR), was evaluated from FSI and CFD simulations and assessed as potential correlate of aneurysm progression. FSI simulations successfully matched MRI data regarding descending to ascending aorta flow rates (R2 = 0.92) and pulse wave velocity (R2 = 0.99). Compared to CFD, FSI simulations showed significantly lower percentage errors in ascending and descending aorta in flow displacement (−46% ascending, −41% descending), jet angle (−28% ascending, −50% descending) and maximum velocity (−37% ascending, −34% descending) with respect to 4D flow MRI. FSI- but not CFD-derived SSR differentiated between stable and dilating MFS patients. Fluid dynamic simulations of the thoracic aorta require fluid–solid interaction to properly reproduce complex haemodynamics. FSI- but not CFD-derived SSR could help stratifying MFS patients.
Tipo de documento
Artículo
Versión publicada
Lengua
English
Materias (CDU)
54 - Química
Palabras clave
Aneurismes aòrtics
Biologia computacional
Dinàmica de fluids--Informàtica
Interacció fluid-estructura
Ascending aorta aneurysm
Marfan syndrome
Computational fluid dynamics
Fluid–structure interaction
Shear stress ratio
Páginas
13 p.
Publicado por
The Royal Society; Royal Society of Chemistry
Publicado en
Royal Society Open Science. Vol.7, n.2 (2020), 191752
Número del acuerdo de la subvención
info:eu-repo/grantAgreement/MINECO/PN I+D/RTC-2016-5152-1
info:eu-repo/grantAgreement/Fundació la Marató de TV3/grant no. 20151330
info:eu-repo/grantAgreement/EC/FP7-MCA/grant no. 267128
info:eu-repo/grantAgreement/MINECO/ISCIII/PI14/0106
info:eu-repo/grantAgreement/MINECO/ISCIII/PI17/00381
info:eu-repo/grantAgreement/EU/H2020/Grant agreement ID:823712
info:eu-repo/grantAgreement/EU/H2020/Grant agreement ID:777204
Este ítem aparece en la(s) siguiente(s) colección(ones)
Derechos
© L'autor/a
Excepto si se señala otra cosa, la licencia del ítem se describe como http://creativecommons.org/licenses/by/4.0/