How Sentiment Indicators Improve Algorithmic Trading Performance
Altres autors/es
Data de publicació
2025-07ISSN
2158-2440
Resum
This study explores the hypothesis that sentiment indicators can enhance the performance of algorithmic trading strategies. Specifically, we investigate the impact of incorporating investor sentiment metrics, such as the CNN Fear & Greed Index and cryptocurrency sentiment, on predictive accuracy and profitability. To test this hypothesis, two trading strategies are compared in the Nasdaq Mini futures market. The first strategy employs traditional technical indicators and machine learning models, whereas sentiment-based indicators are incorporated to the second one to enhance it. Backtests are conducted over the period from May 16, 2022 to December 20, 2024, to evaluate the effectiveness of sentiment signals. The results demonstrate that the sentiment-augmented strategy improves risk-adjusted returns, reduces volatility, and enhances profitability compared to the baseline model. This study provides evidence that sentiment indicators can be a valuable addition to algorithmic trading systems, offering a more stable and risk-managed approach, even though they may not always maximise net profit.
Tipus de document
Article
Versió del document
Versió publicada
Llengua
Anglès
Paraules clau
Pàgines
11 p.
Publicat per
SAGE Publications
Publicat a
SAGE Open, Vol. 15, Issue 3
Citació recomanada
Aquesta citació s'ha generat automàticament.
Aquest element apareix en la col·lecció o col·leccions següent(s)
Drets
© L'autor/a
Excepte que s'indiqui una altra cosa, la llicència de l'ítem es descriu com http://creativecommons.org/licenses/by-nc/4.0/


